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This paper deals with the trend to equilibrium of solutions to the space- 
homogeneous Boltzmann equation for Maxwellian molecules with angular 
cutoff as well as with infinite-range forces. The solutions are considered as 
densities of probability distributions. The Tanaka functional is a metric for the 
space of probability distributions, which has previously been used in connection 
with the Boltzmann equation. Our main result is that, if the initial distribu- 
tion possesses moments  of order 2 +e,  then the convergence to equilibrium in 
his metric is exponential in time. In the proof, we study the relation between 
several metrics for spaces of probability distributions, and relate this to the 
Boltzmann equation, by proving that the Fourier-transformed solutions are at 
least as regular as the Fourier transform of the initial data. This is also used to 
prove that even if the initial data only possess a second moment, then 
J~,,l> Rf(  v, t)Iol 2 d v ~  0 as R ~ r and this convergence is uniform in time. 

KEY WORDS: Boltzmann equation; Fourier transform; probability 
measures; weak convergence; Prokhorov metric; bivariate distributions with 
given marginals; Tanaka functional. 

1. I N T R O D U C T I O N  

In this paper we compute bounds on the rate of approach to equilibrium 
in a metric equivalent to weak*-convergence of measures by solutions to 
the spatially homogeneous Boltzmann equation for Maxwell molecules and 
to the noncutoff Kac equation recently introduced by Desvillettes. t~31 The 
results are of ihterest for the theories both of the spatially dependent 
Boltzmann equation and the asymptotic equivalence of the latter equation 
and those of fluid dynamics. 
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The rate at with the solution to the Boltzmann equation approaches 
equilibrium in the strong L~-sense has been recently investigated by Carlen 
and Carvalho, first for a model Boltzmann equation (8~ and then for a gas 
of rigid spheres. (9~ The main tool was a new quantitative entropy produc- 
tion inequality. With this tool, they developed a method for computing a 
bound on the time it takes a solution that starts arbitrarily far from equi- 
librium to reach any given neighborhood of the equilibrium itself. Once an 
appropriately small neighborhood of the equilibrium is reached, methods 
based on the spectral theory of the linearized collision operator can be 
applied, to provide control over the rate of the final approach to equi- 
libriumJ 2) 

The stability results obtained by Arkeryd t-~l are valid only for inter- 
molecular forces harder than Maxwellian ones, which also have an angular 
cutoff. These results were extended to the Maxwellian case in ref. 38, but 
also there an angular cutoff is required. 

The first asymptotic results on solutions far from equilibrium refer to 
the spatially homogeneous Maxwellian case. The first one goes back to 
Ikenberry and Truesdell, (24~ who proved that all higher moments that exist 
initially converge exponentially to the corresponding ones of the equi- 
librium solution. The second is due to Tanaka, t35) who obtained stability 
theorems for initial values with equal initial mass in a metric equivalent to 
weak *-convergence of measures. The question of rate of convergence is not 
addressed there. 

The proofs in ref. 24 and 35 depend on the possibility of particularly 
exact computations for a gas of Maxwellian molecules, and the same is true 
for the first of the papers by Carlen and CarvalhoJ 8) 

The basic idea in this paper is to consider the Fourier transform of the 
Boltzmann equation for Maxwell molecules. The resulting equation, which 
was introduced by Bobylev, ~5"6J is considerably easier to handle because 
the dimension of the integral in the collision operator is lower. In a 
recent investigation, Pulvirenti ~3~ studied this equation, and in particular 
she found a simple, direct proof of Tanaka's existence and uniqueness 
result. 

In the final part of this introductory section, we will give a more 
precise statement of the problem, and present the Boltzmann equation and 
the simple, one-dimensional Kac equation. Moreover, the Tanaka metric 
will be defined, and after that we can state the main results of the paper. 

Then in Section 2 we consider the kinetic equations in greater detail, 
and in particular the Fourier-transformed versions. Our main interest is the 
asymptotic behavior of the Fourier transforms of the solutions, and for the 
Kac equation the most important result is that supr [f(~, t ) -  cb(~)[/[~[ ~+2 
converges exponentially to 0 as time goes to infinity, if d~ is the Fourier 
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transform of the equilibrium solution. This bolds for all ~ > 0 if this quan- 
tity is bounded at t = 0. A similar result holds for the Boltzmann equation 
for Maxwell molecules, but there special care has to be taken with the 
nonsymmetric part of the pressure tensor. The result there is that 
f (4 ,  t) - d~(~) = 45 1(~, t) +/~(~, t), where 451 behaves exactly as ) ~ -  ch does 
for the Kac equation, and where/~(~, t ) =  (9( I~[ 2) and decays exponentially 
with time. For both equations, the results remain valid in the noncutoff 
case (also for the noncutoff Kac equation, which was introduced by 
Desvillettes1131). For the one-dimensional Kac equation, it makes sense to 
discuss the odd and even parts of the solutions, and as a byproduct of the 
above discussion we find that the odd part fo of a solution of the classical 
Kac equation satisfies the equation Ofo(v, t)/Ot + fo(v, t)= O. 

The results from Section 2 are slightly generalized in Section 3, where 
the condition that the initial data possess more than two moments is 
relaxed. In fact, most of the results from Section 2 hold also in this case, 
and all that must be added is a discussion concerning the relation between 
integrability at infinity of a function and the regularity of its Fourier trans- 
form. An immediate consequence of this is that the solutions of the 
Boltzmann equation for Maxwellian molecules are uniformly integrable at 
infinity, i.e., that, given e > 0 ,  there is an R > 0  such that ~H>Rf(v, t) dv<e 
for all t >/0. 

In Sections 4 and 5 the Tanaka metric for probability distributions is 
introduced, first for the one-dimensional situation, where this metric has a 
very simple interpretation, and then for the general case. In higher dimen- 
sions we find it useful to relate the Tanaka metric to a different metric, the 
so-called Prokhorov metric. These metrics are discussed in relation with 
the density function associated with a probability distribution function. For 
the Kac and Boltzmann equations, this is quite relevant, since if the initial 
data are densities, then so are the solutions. These results together with the 
results from Section 2 directly prove the main results, which are stated 
below. 

In the remaining part of this section, we give a presentation of the 
Boltzmann equation and the Kac equation, and at the very end we are able 
to state the main results of the paper. 

We consider the Boltzmann equation for a monatomic gas and only 
for space-independent data. In addition we restrict ourselves to the case of 
Maxwell moledules, so the most general equation treated here is 

Of(v, t)= IR a fs'- [f(v', t)f(w', t)-- f(v) f(w)] 

x a ( n .  ( v -  w)/Iv - wJ) dn dw (1.1) 
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together with appropriate initial data fo. Here appropriate means that the 
data are positive and satisfy 

a3fo(v)  d v =  l , .[a3 fo(v) Ivl~- d v =  Eo < oO 

J'R3 f0(v) log fo(v) dv = Ho < oo 

(1.2) 

These quantities correspond to the mass, energy, and entropy of the gas, 
and formal manipulations of ( 1.1 ) suggest that the first two are conserved, 
and that the entropy is nonincreasing. By similar calculations one finds 
that there is only one more conserved quantity, the momentum, 

IR3fO( V)V dv (1.3) 

These statements have also been established rigorously, at least for the 
Maxwell case, which is considered here, and for the so-called cutoff 
molecules which are described below. 

We will also consider other moment conditions on the initial data, 

II7o II 1. ~. = fR~ fo(v)( 1 + Iol 2).,./2 dv < m (1.4) 

as well as a certain bounds on the Fourier transform of fo near the origin. 
This will be described in Section 2. 

The right-hand side of ( 1.1 ) describes the rate of change of the density 
function f due to collisions. The probability that a particular collision 
takes place is given by the rate function a. This function in general depends 
also on the relative velocity I v -  w[, but for Maxwell molecules there is only 
an angular dependence as in (1.1). 

The conservation laws are derived from the fact that the collisions are 
assumed to be elastic, and therefore to conserve momentum ( v + w =  
v '+  w') and energy ( Io l2+  Iwl- '= Iv'12+ Iw'l-'). Here, as well as in (1.1), v' 
and w' denote the velocities of two particles which had the velocities v and 
w before they collided. The new velocities also depend on the impact 
parameter n, and they are given by (which is one of the two natural 
representations) 

v' = �89 + w + Iv - wl ,1) 
(1.5) 

w' = �89 + w -  I v -  wl n) 
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The term "cutoff molecule" is used to signify molecules such that 

fs,_a[u. ( v -w) / l v -w[]  du=-~ < co 

When this holds, the Boltzmann equation can be written 

~ f(v, t) + #f(v, t) = IR3 Is,-f(v', t)f(w', t) g[n. (v --w)/lv --wl] dn dw 

and the right-hand side, the gain term, will usually be denoted Q+(f ,  f)(v). 
Much is known about this equation, apart from the existence of a unique 
solution, for which the conservation laws can be established rigorously. 
The only equilibrium solutions are the so-called Maxwellians, which are 
functions of the form co(v)=(2~)-3/2exp(-lv]2/2). A Maxwellian with 
these coefficients has mass IIcollL, = 1, energy E(ro)=3,  the momentum is 
zero, and it is the unique limit as t tends to infinity of any solution of the 
Boltzmann equation if the initial data have the same mass, momentum, 
and energy. 

A recent result which is relevant when studying the entropy produc- 
tion ~9~ is the construction of a time-independent (for t~>to>0)  lower 
bound of the type c e x p ( -  [vl2+"/b)J 3)) 

In the noncutoff case the situation is more complicated, since then the 
form (I.1) must be kept, and one is limited to study weak solutions, for 
which (1.1) makes sense first after multiplication with certain test functions 
and integrationJ ~' 16) Apart from the uniqueness and existence results 
mentioned above, perhaps the result which is most relevant in the present 
context is the recent proof by Arkeryd ~3~ that the weak solutions converge 
strongly to a Maxwellian (which by uniqueness in the case of Maxwell 
molecules must be the one Maxwellian with the correct mass and energy). 
New, much simplified proofs of the existence and uniqueness of solutions 
in the Maxwell case have been obtained recently by Pulvirenti and 
ToscaniJ z4) The uniqueness result implies that one is free to construct the 
weak solutions according to convenience. Here we consider the weak limits 
of the solutions of (1.6) where the rate function a has been replaced by 

a~(x) = min(k, a(x)),  6k=~s,_ak[n. (v--w)/[v-w[] dn (1.6) 

What is important to note is that, in order to transfer convergence results 
from the cutoff case to the noncutoff case, it is necessary to determine how 
these depend on the exact form of a. 
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In spite of the fact that a lot is known about the space-homogeneous 
Boltzmann equation and its solutions, there are still unsolved problems. 
For this reason it is interesting to study models of the full equation which 
are simpler in some ways, but still keep as many of the properties as 
possible. One such equation is the one-dimensional Kac equation, which 
was first discussed in ref. 25 and subsequently thoroughly investigated by 
McKean. 126) The original form is 

in 1 Of(v, t)+f(v, t)= f(v', t)f(w', t)~-~ndOdw (1.7) 

where in this case the postcollisional velocities are given by a rotation in 
the (v, w) plane 

v' = v cos 0 - w sin 0 

w' = v sin 0 + w cos 0 

Clearly the structure of this equation is similar to the Boltzmann equation, 
and also here mass and energy are conserved and the entropy is nonin- 
creasing. However, momentum is not conserved unless it is zero initially, 
and therefore that will be the only case considered. Also here the only equi- 
librium solutions are Maxwellians, which in this case should be normalized 
as r = ( 2~z ) - 1/2 exp( - I v l 2/2 ). 

The right-hand side of (1.7), which also for the Kac model will be 
denoted Q+, signifies that all collisions are equally probable, and for the 
Boltzmann equation that would correspond to a being a constant. Recently 
Desvillettes introduced a generalized Kac model in which the factor 1/2re is 
replaced by a function a(0). His goal was to obtain an equation analogous 
to the noncutoff Boltzmann equation, and therefore he made the assump- 
tion that a has a nonintegrable singularity at 0 = 0. 

The solutions of (1.1) and of (1.7) are densities, and there are 
associated probability distributions on R 3 and R, respectively. Our main 
results about the asymptotic behavior of the solutions are expressed in 
terms of a metric on the space of probability distributions, the Tanaka 
metric. This metric, which is thoroughly discussed in Section 4 for the one- 
dimensional case and in Section 5 for the higher dimensional case, is 
defined by 

T(F, G) = i n f E ( l X -  YI 2) 

Here F and G are two distribution functions on R d, and the infimum 
should be taken over all pairs of random variables X and Y taking values 
in R a distributed according to F and G, respectively. Tanaka (34. 351 proved 
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that if F is the distribution function corresponding to a solution f of the 
Boltzmann or Kac equation, and i f /2  is the distribution function corre- 
sponding to an equilibrium function, then T(F( . ,  t), 1-2) ~ 0 as t --* oe, and 
this in turn corresponds to weak*-convergence. We prove that if (1.4) 
holds for some s > 2, then 

T(F( . ,  t), [2) ~ C1 e - ~ t  (1.8) 

The constants C~ and C2 can be estimated uniformly in terms of the 
moment conditions of fo. Both for the Kac and Boltzmann equations, the 
same results hold in the cutoff case as in the noncutoff case. 

2. THE FOURIER T R A N S F O R M  OF KAC AND B O L T Z M A N N  
EQUATIONS 

This section deals with the Fourier transform of equations (1.1) and 
(1.7). The idea of discussing the Fourier transform of these equations is not 
new. For the Boltzmann equation, Bobylev 151 first made a thorough 
investigation of the matter. He found that the equation for f in certain 
respects is much simpler than the equation for f,  and in particular that the 
collision operator is less complicated. For a complete review, including 
references for the pertinent literature on the subject, see Bobylev. ~1 

The Kac equation also is simplified by considering the Fourier trans- 
form. This simplification has been exploited among others by Gabetta  and 
Toscani~s. 21~ and more recently by Desvillettes ~131 in this proof that the 
solutions of the noncutoff equation are smooth, and by Gabetta and 
Pareschi.~9 

Recently, the Fourier transform also proved useful in connection with 
the numerical approximation of the collision operator, c~z 201 

In most of the discussion in this section, we will assume that the rate 
function a is normalized, i.e., that # = 1. This can always be achieved by a 
change of variables, t ---, #t, and in the cutoff case it is only a matter of con- 
venience to do so. In the construction of weak solutions to the noncutoff 
equations, however, we actually consider a sequence of equations where the 
#k is a sequence increasing to infinity. If fk denote the solutions of the 
corresponding normalized equations, then the weak solution of the non- 
cutoff equation'is the weak limit of fk(v, dkt). The number ~ is a measure 
of the collision frequency, and when the truncation is lifted in (1.6), this fre- 
quency goes to infinity. That in turn is equivalent to a stretching of time 
in the corresponding normalized equation. But the stretching of time takes 
place in a sequence of different equations, and our main result concerning 
the noncutoff equation must be thought of as a balance between the 
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increasing number of collisions as k --. oo and the fact that each collision is 
likely to change f less when k is large. 

First we consider the simpler Kac equation and its solutions f(v, t). 
The Fourier transform of f is 

f(~, t) = f v f(v, t)e-ir176 dv 

and the conservation of mass and energy for f translates to 

f(o,  t )=  1, 

f~r t)= -Eo, 
IIf(. ,  t)ll ~o ~< 1 

"" t) ]l ~ ~< go Ilfr162 ", 
(2.1) 

each one being valid for all t/> 0. The equation which gives the evolution 
o f f  can be found by multiplying (1.7) with e -iCy and integrating. This gives 

O f ( l ,  t) + f (~ ,  t ) = f "  f (~  cos o)f(~ sin 0) g(0) dO 
- - T t  

(2.2) 

for the general case with a nonconstant rate function, and with a nor- 
malized so that ~ ,  a(0) dO = 1. If one makes the assumption that a is an 
even function, it is easy to split (2.2) into a system of equations for the real 
and imaginary parts of f. Thus we write f(~,  t )=r  t ) +  iqJ(~, t), and 
obtain for the real part 

0t ~b(~, t) + r t) = r cos 0) ~b(( sin 0) a(O) dO 

~(~, O)=Ref (~ ,  O) 

(2.3) 

and for the imaginary part 

0t ~b(~, t) + q;(~, t) = ~b(~ cos 0) ~b(~ sin 0) a(0) dO 
- - I t  

~(~, 0 ) = I m f ( ~ ,  0) 

(2.4) 

One interesting aspect of this splitting is that the equation for the real 
part (corresponding of course to the even part of f )  satisfies the same 
equation as f,  and that the equation for ~ is linear, once (2.3) has been 
solved. In fact, for any a which has the additional symmetry a(O)= 
a(n - 0), the right-hand side of (2.4) vanishes, which means that ~(~, t) = 
q;o(~) e- ' ,  and the same then holds for the odd part of the solution f 
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Inspired by this observation,  one would like to obtain a similar result 
for the real part,  and for the imginary par t  for more  general rate functions. 

The main estimate for the Kac  equat ion is the following. 

Lemma 2.1. Let f ( ~ ,  t) be the solution of Eq. (1.7), and assume 
that  the initial data  fo  satisfy the natural  bounds given by (2.1), and 
assume in addit ion that  fo(~) -03(~)  = C~ 2+=) as ~ --, 0, where a > 0  is 
any given constant.  There is a constant  A < 1 depending on o~ and on the 
rate function a such that  

If(r 2+~t)-03(r f( 0)-03 ~ 

Remark2.1.  The condition that fo(~)-03(~)=~0(l~l 2§ is 
satisfied if [If I[ ].2+c( < co. The boundedness  for all times of moments  that  
exist initially was first established for Maxwellian molecules in ref. 24 and 
in a more  general case, including soft and hard potentials, in ref. 16. But 
even with no extra condition on the initial data  (apart  from bounded mass  
and energy), ( f (~ )  - co(()) = o(1~12). An analogy of L e m m a  2.1 for this case 
will be discussed in Section 3. 

Proof of Lomrna 2. 7. The main tool is the following estimate of  the 
Gronwal l  type. Assume that  g satisfies, for some positive constant  A < 1, 

~tg(~,t)+g(~,t) <<.A I Ig( . , t ) l l~ ,  a.e.~ (2.6) 

Then 

In order 
co(~)] I~[-~-'+~( Then �9 satisfies 

q0(~, t) + ~(~, t) = -~ (~(~  cos 0, t) Icos 012 +~j>(~ sin 0, t) 

+o5(~ cos 0) Isin 012+~ ~(~  sin 0, t)) a(O) dO 

IIg( , t)ll o~ ~ IIg( ', 0)11 ~ e -el -A>, (2.7) 

to use this estimate, we define q~(~,t)=[f(~,t)-  

(2.8) 
With an analogous definition, the initial data  ~o  are bounded.  Then the 
hypotheses for fo imply that I1r ~ < co. But due to (2.1), which hold also 
for 03, and for all t>~0, the right-hand side of  (2.8) can be estimated by 
A liP( ' , /)11~, where 

A = (Icos 01 -'+~ + [sin 01 -'+~) tr(0) dO (2.9) 
- - r t  
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Since Icos 0 1 2 + c ~ - [  - Isin 012+~< 1 for cos 0 ~ 0 ,  1, the integral is strictly 
smaller than one, and thus the conditions for the Gronwall estimate (2.6), 
(2.7) are satisfied. I 

We proceed now to the Boltzmann equation. The Fourier transform 
here is 

f(~, t )=faf(v,  t) e-ie~' dv 

where ~ .v  denotes the usual inner product. In this case, the conserved 
quantities are 

f(O, t )=  1, 

v'-f(0, t )=  - & ,  

IIf(., t)ll o~ ~< 1 

II v-'.F(., t)ll oo ~Eo  
(2.10) 

As was the case with the Kac equation, one may now take the Fourier 
transform of the Boltzmann equation (1.1) 161 to obtain 

(2.11) 

Here ~• = ( ~ _  Ill n)/2, and thus (+  and ~-  lie on a sphere with one of its 
poles at the origin and the other one at ~. From a numerical point of view, 
this means a great reduction in computational effort, since the dimension 
of integration is reduced from five to two. Another important aspect is that 
Q+ is localized in the sense that Q+(f ,  ~)(~) only depends on f (~+)  and 
~(~-)  for I~• ~< I~1. 

Our next goal is to obtain an estimate like the one in Lemma 2.1. 
Actually that is easy: Lemma 2.1 holds exactly as it stands if f is inter- 
preted as for the Boltzmann equation. The proof is just like the proof in the 
one-dimensional case. However, in order to achieve that the initial data 
satisfy ( f o ( ~ ) -  o3({))= dO(l~l 2+~) one must make the assumption that 

re, r t )=  fr162 t)=fr162 t) 

and that all mixed derivatives vanish at the origin. This is much more than 
requiring that fo has a given mass, momentum, and energy. Thus the first 
task will be to investigate the evolution of re, eft0, t) for iv~j and of 
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fr162 t) - V2f(0, t). This corresponds exactly to studying the nonisotropic 
part  of  the pressure tensor, 

p~,j(t)= fR3f(v, t)(v~vj--~,jlv[~-/3) dv, ~i,j= {lo if i=j 
(2.12) 

otherwise 

Such a study was carried out already in ref. 24 for real Maxwellian 
molecules, and the slightly more general situation here can be treated in a 
similar way. For  this computat ion,  it seems that the original form of the 
equat ion is most  practical. Thus we multiply (1.1) by v~vj and integrate to 
get 

~ IR3f(v, t) vivjdv 

dn dv dw 

where q denotes v - w, and where the gain term has been rewritten with the 
change of variables (v, w) - ,  (v', w') in the usual way (all such details can 
be found, e.g., in ref. 11). Expanding the expressions for v' and w' [see 
Eq. (1.5)] gives 

0 
~ fs f(V, t) vividv 

1 
+~ 1,3 IR, 

1 + LL 

f(v) f(w)(wiwj- 3vivj) a (--~)n'q dn dv dw 

17. q 
;s2f(v) f(w)(viwj + [q[ vinj+ lq[ winj) a (-T-~)dndvdw 

2 fn. q'~. fs,.f(v)f(w) q ninja~-]-~jandvdw (2.13) 

As before, we assume that  ~s,-a(n.q/lql)dn= 1, and moreover  that a 
is an even function. In addition we assume that the mass IlfllL, = 1, and 
that  the m o m e n t u m  is zero. Then the first term in (2.13) becomes 
-�89 vivjdv, and the second term vanishes. The third term can be 
written 

(2,4, 
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where 

n �9 q Ai, l(q)=~s ninja(~)d"dvdw=-- 
The constant A' is given by 

3 A ' -  1 1 - A '  
2 [q[2 q i q J + - - - ~ , j  (2.15) 

A' = ,.a(u.q/lql)(u.q/lql)Zdn=2n tr(cosO) cos2OsinOdO (2.16) 

The last expression of (2.15), and the expression for A', which shows that 
A' really is a constant and does not depend the direction of q, can be 
obtained by some algebraic manipulations, after expressing the first 
integral in polar coordinates around q/fq]. The normalization of a means 
that the integral in (2.16), without the factor cos 2 0, is one, and therefore 
A' is strictly less than one. Inserting this into (2.13) and expanding 
q = v - w gives 

3 ( A ' -  1) 1 - A '  r 

which has the solution 

Pt.j(t) = e-A' 'pi, j(O) (2.17) 

where A~ =3(1--A' ) /4 .  Note that these are exact computations, which 
depend only on the a priori knowledge that the mass, momentum, and 
energy are conserved. We recall again that this result can be found in 
ref. 24. 

On the Fourier transform side, this implies that 

f~,~, (~, t) + },~,,~ v'}(~, t) 

is bounded (this follows from the conservation of mass and energy), and 
decays exponentially with the rate exp(-A~ t) at the point ~ = 0. 

We can now return to finding an estimate analogous to (2.5) for the 
Boltzmann equation. As in the proof of Lemma 2.1, let ~(~, t) = f (~ ,  t) - 
aS(~). Then (b satisfies 

0 

r  0)  = f o ( ~ )  - c~(0) 

(2.18) 
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and the conservation of mass, momentum, and energy imply that 

O(~,t)=-~'pi4(t)~i~j+o([~] 2) as ~ 0  
i , j  

where the Pi.j are given by (2.17) (cf. Remark 2.1). Define Y i j ( r  ~i~y for 
I~[ <~ 1, and Xj.j(~)= 0 otherwise, and let 

15(~,t)=-e-A't~,pg.j(O)X~./~), O,(~, t )=O(~, t ) -P(~, t )  (2.19) 
i , j  

Just as in the proof of Lemma2.1, we assume that O, (~ , t )=0( [~[  2+~) 
for some ~ > 0 (by making an extra assumption on the moments for fo). 
Inserting (2.19) into (2.18) gives an equation for O,, 

0 0 
o-7 o ,  + ~ ,  = 0 + ( 0 , ,  f )  + 0+(o9, ~ , )  + ~(P, f )  + 0 +(o9, P) - ~  ~ -  P 

= 0+(0,, f) + 0+(o9, 0,) (2.20) 

+ e-A" ~,p,.j(O)[ (1 -- A,) X,,j-- O+(X,.j, f )  + 0+(o9, X,,j) ] 
i , j  

05,(r 0) = fo(r - c~(~) - P(r 0) = r162 +=7 

Using the fact that f(~,  t ) =  1 + r (this holds uniformly in time), and 
cb= 1 + r162 one obtains, by calculations like the ones in (2.13), 

0 +(x,j, f)(r 0 +(o9, x,,+)(r 

= Is-, (r es+ + r  r  ) <'(" �9 r162 an + r  

= �89162162 + �89 Ir I~_, n,nja(n - r162 dn+  e( l r  

' + = ~_r162 �88 - -  l ) r162 + { (  1 - A ' )  a , . j  Ir ~ + ~(1r  

One can then check that the (_0(1r terms in the sum in (2.20) cancel, and 
consequently that 

O t)+O,(r t)=O+(O,,f)(r O[)(r162 t) yt~,(r 
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where R(G t) and R(G t) I~1--4 are bounded, uniformly in time. Following 
the procedure from the case of the Kac equation, we define ~2(~, t ) =  
~,(l ,  t) Ill-(2+~). Then ~2 satisfies 

0 
~d~, t) + ~2(I, t) 

=Is-, Er +' t ) f ( l - ,  t)Icos(O/2)l 2§ 

+o3(~ + ) ~2(~-, t) Isin(0/2)l "-+~ ] ~(cos(0)) dn 
+ e-A"  R(G t) 1~1-(2+~ 

where cos(0) = n .  G / I l l .  Then 

O q52(G t) + ~02(G t) <~llcbz(.,t)ll~A"+C~e -A'' (2.21) 

where 

A" =~ I-Icos(0/2)12§ Isin(0/2)l 2+~3 or(cos 0) dn 
Js 2 

=2~  I]~ [Icos(O/2)lZ+~+lsin(O/2)12+~]a(cosO)sin(O)dO (2.22) 

where 

f(~,  t ) =  cb(l)+ P(l ,  t ) +  ~ ( l ,  t) 

I~,(~, t)l. Ill-~2+=) < [c ,  + I1~(., 0)l. I-'2+~11 oo3 e - c = '  

The constant C] is the constant from (2.21) [C, = 0  if P(~, 0 ) = 0 ] ,  and 
C~ = min(A ], (1 -A")) .  

One problem remains to be addressed. Recall that in the noncutoff 
case, the rate function cr has a nonintegrable singularity at cos 0 = 1, and 

and C] = supr R(i, t ) [ l [ 2 -L  Note that C] = 0 if the pressure tensor of the 
initial density is isotropic. The constant A" is smaller than one for the same 
reason as for A or A'. Then, using an estimate similar to (2.7), (2.5), we 
may deduce the following lemma. 

I . e mm a  2.2. Let f(~,  t) be the solution of Eq. (1.1), and assume 
that the initial data fo satisfy the natural bounds given by (2.1). Assume in 
addition that fo( l ) -c~( l ) -P(~,0)=0( l l l2+~) ,  where P is defined by 
(2.19), and where 0c is a given positive constant. Then 
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that the solutions are constructed as the weak limits of the sequence 
fk(v, #,t), where fk(o, t) is the solution of (1.1) [or  (1.7)], with a replaced 
by ak/Sk, which are defined by (1.6). Of course the same substitutions are 
made in the Fourier-transformed equations (2.2) and (2.11). We must now 
determine how the constants A, A", and A~ depend on k. The following 
result holds only if the singularity of a is not too strong, but the conditions 
given in Lemma 2.3 are exactly the ones that one expect from a physical 
point of view. 

I_emma 2.3. 1. Let a(O) be the rate function for the Kac equation, 
and assume that lOI2a(O)eD([-n, n]). Let A k be defined by (2.9), with 
a replaced by ak. Then 

Ak=  1 --,4k/#k (2.23) 

where 0 < -4k ~ -4 < 1, for some A, as k --* ~ .  The constant A depends on 
a and on ~. 

2. The same type of estimates hold for A' and .4" if the rate function 
for the Boltzmann equation satisfies 1Ol 2 a(cos 0) e L ~([ 0, rE ], sin 0 dO). 

Proof. The proof is exactly the same in all cases. From Eq. (2.9), 

l ;  _ 0,2 . Ak = ak(O) dO---- (1 Icos --Isin OI 2+~) ak(O) dO 
- - - ~ z  O ' k  - - n  

= 1-1f]n(1--lcosOl~-+~'-lsinOl2+~')min(a(O),k)dO 

and the expression multiplying ak in the last member is (9(02), the integral 
in the last member converges as k ~ ~ ,  to some A >  0. 1 

3. DATA WITH NO HIGHER M O M E N T S  BOUNDED 

In this section we remove the condition that the initial data possess 
some higher moment, and assume only that the mass and energy are 
bounded. Let f be any function with bounded mass and energy, i.e., such 
that ~r~f(v)( l  + [vl 2) dr< Go. Then there is a strictly increasing function 
r R + -~ R +, r  ~ as r ~  oo, but such that still f(v)r 2) e L I(R3). 
This means, very loosely speaking, not only that the energy is bounded, 
but that one hd.s some extra integrability of f for large velocities. Exactly 
how much must depend on f,  and therefore r depends on f. This classical 
result from real analysis has recently been used in connection with existence 
proofs for the BGK model of the Boltzmann equation. (32) 

The integrability and behavior at infinity of a function f are related to 
the regularity of the Fourier transform f ,  and from the function r one can 
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directly compute a modulus of continuity for the second derivatives of f .  It 
will be an easy generalization of the results from Section 2 to prove that the 
solutions of the Boltzmann equation preserve the modulus of continuity 
for the initial data. The most interesting implication of that is that this 
implies a uniform integrability at infinity for the solutions: If 
f0(v)(l + [vl 2) r then f(v, t)(1 + [vl2)[rk(lvl)]'/2eLl(R3) for 
all t > 0. In fact, we were motivated to study the problem of this section by 
E. A. Carlen, who has proven that this holds for the Kac equation, and he 
suggested that the results analogous to those in the previous section could 
be useful for proving such a result 17) (the result for the Kac model follows 
from ref. 10, Theorem 2.1, and the remarks thereafter). The result has a 
direct application in terms of entropy production bounds. In refs. 8 and 9 
it is proven that the entropy production rate dH(f)/dt can be estimated in 
terms of the relative entropy H ( f  I co) as IdH(f)/dtl >1 7 q H ( f  I w)), where 
~g is a strictly increasing function and ~ ( 0 ) = 0 .  This proves that the 
entropy of solutions f ( t )  to the Boltzmann equation increases toward its 
maximum, but only if the same function 7 ~ can be used for all f ( t ) ,  t > 0. 
Since the construction of gt depends on the decay of ~l~l>nf(v)dv as 
R --* oo, the uniform estimates obtained in this section are precisely what is 
needed to prove that the entropy increases toward its maximum if all initial 
data with bounded entropy and energy. Using Elmroth's result that all 
moments of order higher than two remain bounded requires that the initial 
data possess at least 2 + e moments. 

Let us first study the relation between the integrability of a function f 
and the regularity of f The easy part is to estimate the modulus of con- 
tinuity of the Fourier transform: 

Lemma 3.1. Let 0 <r  R + ~  R + be a strictly increasing function, 
and such that ~b(r)/r is decreasing. Let ~ ( ( ) =  1/r Then 

fR3 lf(v)l (1 + IVI") r dr< co ~ IDmf(~)-D"'f(q)] < q41C-~l) 

for all 4, ~/, and where D"' denotes any derivative of order m. 

Proof. We have 

I D " f ( ~ )  - -  D'f(~l)] 

~<~.2 sin(~lr  dv 

]sin(�89 ]vl)] 
< 2  [ If(v)[- Ivl"~b([vl) dv sup 

,,,i r  

(3.1) 



Trend to Equilibrium for Solutions of Boltzmann Equation 917 

and the result follows immediately, since I sin(xy)/r ~<max(xy, 1)/~(x) 
~< 1/~b(l/y). | 

The reverse part is much more difficult to prove. 

L e m m a  3.2. Let ~ and ~k be defined as in Lemma 3.1, and assume 
in addition that ~(r) is differentiable and that ~' (and q~) are of regular 
variation. (4) If f is nonnegative and the Fourier transform f satisfies the 
right-hand side estimate of (3.1), then 

fa3f(v) Ivlm[ r ] '/2 dr< C I~3f(v) Iol m dv (3.2) 

where the constant C can be expressed in terms of r 

R e m a r k  3.1. The study of Abelian-Tauberian estimates is a very 
classical field of mathematics, and the literature is very extensive; a good 
source of results of this type is in ref. 4. Thus we dare not claim that these 
are new results, though in fact we have not been able to find precisely the 
estimate (3.2), and therefore a sketch of the proof will be given below. 

Remark 3.2. A measurable function f is of regular variation if 
there is a real ~, such that for all x > 0, lim,_ ~ f ( t x ) / f ( t ) =  x ~. In our case 
~ = - 1  for r Typical examples are r  and r  
log{ 1 + log[ 1 + log(1 + v)] }. 

Proof of  Lomma 3.2. First we note that it is enough to consider the 
same problem in R ~ and to assume that r is smooth. Moreover, we 
consider here only the case m =0.  Write g ( v ) = f ( v ) -  cp(v), where ~0(v)= 
(2n) -1/-" IlfllL, exp(-v'-/2).  Then g(0) =0,  and f and ~ have the same con- 
tinuity properties. Moreover, if G(v)= I ~ g ( v ' ) d v ' ,  then r  for 

:~0, and G(v)--* 0 as Ivl---' c~. Next let r  [~(v)] J/2 and let r be a 
sequence of smooth, concave functions, coinciding with ~ for small v, and 
r = n for suffciently large v. Then 

f ( v ) r  lim g(v)r  ~o(v)~(M)dv (3.3) 

The second term is clearly bounded. To estimate the first term, we proceed 
by somewhat f6rmal calculations, which can be made rigorous. Integrating 
partially, and then using Parsevars formula, we find that 

g(v) (b,,(v) dv = - G(v) r dv = -~-~ - ~  ~ (r ^ (~) d~ 
- -  a o  - - o o  

(3.4) 

822/'81 '5-6-4 
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From the assumptions on r (r (,)~< C/['l for I'1 > 1, and 18(')1-< 
2 Ilfllt'. Therefore the contribution in (3.4) from I'1 > 1 is bounded by 
C ]lfllz.,/rc. and the remaining part is bounded by 

- r sin(v,) dv d, 
- - I  

"-xlf 1_1 ' g("l[,. ;? r sin(v,,dv d, (3.5, 

But fo r ,  > 0. 

~o l n 

f ?  r ~ f0 r (~)sin(v)dv , ~  f0 r (~)sin(v, dv 

which together with a change of variables y = 1/, in (3.5), and the fact that 
r is monotonously increasing with n, gives the estimate 

1 ;  ~176  , ~ 1 7 6  sin(v)dvdy 

We now invoke the estimate of ~ and the fact that the regular variation of 
r implies that 141 

ff r f:sin(v)/v dv when y ~  oo 

to obtain 

~ 
l_f, ~ ~,(yv)sin(v)dvdy<Cr ~ C 
" 7C.J 1 ~)(v)-dv<r 

and the constant depends only on the specific choice of r | 

After this we return to Eqs. (2.8) and (2.21) and hope to replace the 
factor ]~[ 2+~ with [,12r where r is some function, strictly increasing 
from 0 to oo. The estimate (2.9) now becomes 

A = _ .  cos sm 5 ) dO 
f" r162 cos(0/Z))+ . 0 2r ~1 sin(0/2))'~ 

< f~ . [ cos  0 2(~) + s i n ( ~ )  2]a(0) d0= l  

and again the strict inequality gives exponential decay by the Gronwall 
inequality. Equation (2.22) is modified in the same way. Also the estimates 
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in Lemma 2.3 hold in this case if ~b satisfies some weak conditions. There, 
in the proof we replace [cos(0/2)12+~+ [sin(0/2)[ 2+~ by 

Then 

cos ~~ 2 r162 ~- sin~ = r162 

Ak= l f "  [1--sin=(0"~( 'k(]{j cos(0/2)) r sin(0/2))'~ 
ak -,,1_ \ 2 ] \  r r  ,/ 

( (:))] - 2  Ill sin 2 ~(-~-~+(_p sin = min(a(O),k)dO 

~k 

and the sequence Ak converges just as in the previous case if Ill r162 
is uniformly bounded (e.g., if r is a slowly varying function). The same 
holds for the other estimates in Lemma 2.3. 

The main result concerning uniform integrability at infinity of solu- 
tions to the Boltzmann equation follows immediately. 

T h e o r e m  3.3. Consider the Boltzmann equation (1.1), and assume 
that the initial data fo(v) satisfy the conditions of bounded mass and 
energy. For any e > 0, there is an Re < ~ ,  such that 

I f (v ,  t) Ivl 2 dv <e 
vl > R~ 

and this estimate holds uniformly for all t >f 0. 

Proof.. According to the discussion in the beginning of the section, 
there is a function ~b(r), strictly increasing to infinity, such that 
R3 f0(v)[ 1 + [ V[ 2 r [ V[ ) ] dv < ~ .  One possible construction of such a func- 

tion which also satisfies the conditions of Lemma 3.2 is the following. 
Chose a sequence of numbers xi ~ ~ such that 

f f ( v )  dv = 2- i  
x i - i  <~lvl < x i  

(assume that the total mass o f f  is one), and then another sequence Yi such 
that for all i, xi <~ Yi and Y i - Y i - i  < Yi + l - Y i .  Let 2; = log(yi+]/yi), and let 

b,+, = R- ' [ log{  1 + 1/(i+ 1)} 2,R[ -b , ] /{ log( l  + 1/(i)} 2;+,)] 
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where R[s]=(exp(s)-l)/s.  Then define a piecewise constant function 
b(s)=b, for Yi-i <~s<y,. Let a(t)=exp{I'~ b(s)/sds}, and finally ~b(r)= 
exp{I~ a(t)/t dt}. This construction guarantees that ~b and r are of regular 
variation, and that ~b is increasing, but sufficiently slowly. II 

4. THE T A N A K A  M E T R I C  A N D  THE KAC E Q U A T I O N  

In this section, we introduce some concepts from probability theory 
that have direct connection with our problem of exponential convergence 
toward equilibrium. 

Most of the definitions and proofs both of the present and of the next 
section hold when the underlying space is a separable metric space (S, d). 
Nevertheless, to avoid inessential difficulties, many proofs proofs will be 
restricted to R d, d~> 1. The set of all probability measures on S will be 
denoted by P(S). C(S) denotes the Banach space of bounded continuous 
real-valued functions on S, with norm 

I1~oll ~ = sup{ I~o(x)l: x e S} 

On P(S) we put the usual weak-star topology TW*, the weakest such that 

P~f~odP;  PeP(S) 

is continuous for each rp e C(S). 
It is known after Prokhorov (28' 37. 14) that TW* on P(S) is metrizable, 

and that this metrization can be done in different ways. 
In our applications S is the space R d, d~> 1. In this case, each prob- 

ability measure P induces the distribution function Fe defined by 

Fp(v)=P((--oo, v]) ..... (--~,Vd)), V=(Vl ..... Va)eR a 

and one of these metrics in P(Ra), d~> 1, can be obtained by a convex func- 
tional introduced by Tanaka (34~ in connection with the Kac equation. The 
functional T on P is defined by 

T(F, G)=  infE{ IX-- yI2}, F, G e e  (4.1) 

where the infimum is taken over all pairs of Ra-valued random variables X 
and Y defined on a probability space (I2, F, P) and distributed according 
to F and G, respectively. 
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An alternative definition of T is the following. Let II(F, G) be the set 
of all distribution functions L on R 2d having F and G as marginal distribu- 
tion functions, where F and G are in P. Then 

T(F, G ) =  inf [ Iv-wl2dL(v, w) (4.2) 
L e l l  aR2d 

The analysis of Tanaka ~34J was extended to the multidimensional case by 
Murata and Tanaka tzT) and an important application to the Boltzmann 
equation for Maxwell molecules was finally presented in by Tanaka. c35~ By 
means of classical properties of bivariate distributions with given 
marginals, first obtained by Hoeffding ~22~ and Fr~chet, 1~7~ simple proofs of 
the main properties of the Tanaka functional have recently been presented 
by Toscani r and Pulvirenti and Toscani. 129) 

Let x ^ y = min[ x, y ]. 

Theorem 4.1. Let L*(v, w)=F(v)  ^ G(w). Then, in H(F, G) 

L(v, w) <~ L*(v, w) = F(v) A G(w) (4.3) 

and 

T(F, G) = fRU IV -- wl 2 dL*(v, w) (4.4) 

Next, the existence of a pair of random variables with joint law L* is 
proven by the following resultJ 36~ 

Theorem 4.2. For any F, G e P  there exist measurable functions 
AF, Aa: [0, l ] ~ R d such that (AF(U), Aa(U)), where U is a uniform ran- 
dom variable, has joint distribution function L*. 

Owing to (4.3) and by Theorem 4.1, the main properties of the func- 
tional T are derived. In particular the following holds. 135~ 

T h e o r e m  4.3 .  Let 

.(F. G) = [ T(F, G)] ,/2; F, G �9 P(R") 

Then v is a metric and metrizes TW* on p(Ra). 

Let f(v) and g(v), v � 9  be probability densities with finite moments 
of order 2 + ~, for some ~ > 0, and suppose 

fRlv[a+~f(v) dv<M; fR [v[2+~'g(v) dv<~M (4.5) 
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Let F(v) and G(v) be the induced probability distributions. A direct conse- 
quence of Theorem 4.1 in the one-dimensional case is that, denoting by 
F-~ and G - '  the inverse functions of F and G, respectively, 

T(F, G)=~R 2 [v--wl2dL*(v, w ) = ~  ]F-l(t)-G-I(t)12dt (4.6) 

For any R > 0, (4.5) implies 

~1~,1 Iv -- w] 2 dL*(v, w) <~ 2M/R ~̀  (4.7) 
>R)k .J{ [w  I >'RI  

Moreover, 

Ia-' Iv - wl 2 IIH-<m ~1 I,,'1 <m dL*(v, w) 

~<2R~R " Iv-wl I{I,,I ~<RI ~II,,'I-<<RI dL*(v, w) 

=2R~]  IF-l(t)--G-l(t)l IIIF-,(tlI<RIr~IIG-I~tH<~R I dt (4.8) 

The value of the integral in (4.8) is given by the measure of the area 
between the two distribution functions F and G included in the strip 
[ - R ,  R]. In fact 

I~ lF-'(t)--G-](t)l I{IF-,(t)I<R}r~{IG-,(tH<~R } dt 

R 

= I If(v)-G(v)[ dv (4.9) 
- - R  

On the other hand, for any fl > 0 

R 

IF(v) - a(v)l dv 
- - R  

R 

=I IF(v)-G(v)l IIF<v)_ar 
- - R  

? + IF(v)-G(v)l Ii~L,l_c(v)l>pdv 
- - R  

<~ 2Rfl + ~ fR lF(v) - G(v)l "- dv 
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By Parseval's formula, 

fR [F(v)--G(v)['- dv= 1 fR [f '(~)- ~(~)12 d~ 

But 

P(r ~(r -f(r -g(r 

and therefore 

fR lF(v) -- G(v)l 2 dv 

_ 1 2 
d~ 

1 ('l N If(~)-~(ff)12d~ +2 Iir 1 

Finally, we get the estimate 

T(F,G)<~2M+4RZfl+2--~( N sup If(~)-g(~)l- '+ I )  

Let us fix e > 0, and take 

( ~ ) ' / =  e (_._~_e ") TM. 128 (_~M_) 3/" 
R =  ; f l = ~ \ 8 M /  ' N =  ne 

Then, provided 

sup 

it follows from (4,11) that 

T(F, G) <<. e 

Now, consider that, for any 7 > 0 

sup 
I~il ~< N 

If(~)~2?(~)12<N y f(~)--g(~). ~ 

923 

(4.10) 

(4.11) 

(4,12) 

(4.13) 

(4.14) 

(4.15) 
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Thus, inequality (4.13) is verified if 

ne \ e  / j ~ 7  = 

Put 

6 + 3 y  
d=d(o~, y ) = 3 + y + - -  

Then, by (4.16), 

n2e2 ( e "~ 6/~' 
8.16 z \8-MJ 

C= C(M, ~, y) = 16- 1281 +Y(8M) (6+3rl/~ 

~=c,/ .  f(r162 ~" ~2+7 

(4.16) 

(4.17) 

(4.18) 

substitution of (4.18) into (4.15) proves the following result. 

Theorem 4.4. Let f,  g be probability densities that satisfy (4.5) for 
some ct > 0. Then tbr any y > 0, there are C and d > 0 such that 

f(r162 li,~ 
T(F, G) <~ C TM ~2--g? ~ (4.19) 

The constants C and d are given by (4.17), and so depend only on ~, y, 
and M. 

Coupling the result of Theorem 4.4 with Lemma 2.1 gives the following 
result. 

Theorem 4.5. Let f (v, t)  be the solution to the initial value 
problem for the Kac equation with or without cutoff, with initial density 
fo(v) such that, for some y > 0, 

fRJvJ2+rfo(v) dv=Mo < ~ (4.20) 

Then, f(v, t) is exponentially convergent toward equilibrium in Tanaka 
metric, and 

v(f(t),co)~C1/2a fo(~)-cb(~)l /2d ( ) ~z+y ~ exp - ~ d  t (4.21) 

Proof. Since the initial density satisfies (4.20), there is My such that 

fR [vl2+~f(v't) dv<~MY; fn [v[2+Yo)(v)dv<~M~ 
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By Lemma 2.1 from Section 2, we have 

f(~,  t ) -  cb(~) fo(~)-- (h(~) 
�9 ~-2W; ~ ~ ~ ~ e x p - c ~ ,  

and the result follows by Theorem 4.5. II 
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5. OTHER M E T R I C S  A N D  E X P O N E N T I A L  C O N V E R G E N C E  OF 
A M A X W E L L  GAS 

In Section 4, we obtained exponential convergence to equilibrium for 
the Kac equation in Tanaka metric. There, in consequence of formula (4.6) 
applied to the one-dimensional case, an explicit rate of convergence was 
found. We remark that, as emphasized by Carlen and Carvalho, 18) the 
evaluation of the exponential rate of convergence toward equilibrium is of 
great importance in passing to the fluid-dynamical level. 

In higher dimensions of the velocity variable, Theorem 4.2 is not useful 
for obtaining an explicit expression for T. Therefore we try a different 
approach. The starting point will be the introduction of other metrics on 
P(S). 

For any x ~ S and U ~ S, let 

d(x, U) = inf{d(x, y): y e  U} (5.1) 

and for 6 i> 0 let 

Ua={x~S:d(x, U)<6};  Ual={xeS:d(x,  U)~<8} (5.2) 

Given P and Q in P(S), let 

a(P, Q)=in f{e>  0: P( A ) <<. Q( A") + e for all closed A c S} (5.3) 

where P(A)=jsIA dP, and 

p(P, Q)= max{a(P, Q), a(Q, P)} (5.4) 

Then, p is a metric and metrizes TW* on P(S). 
This metric is known as Prokhorov metric, and was introduced in 

ref. 28 for S complete. A subsequent generalization to a separable metric 
space was obtained by Dudley. (~5) For S complete, Strassen (33) proved the 
striking and important result that, if P, Q E P(S), the Prokhorov distance 
p(P, Q) is exactly the minimum distance "in probability" between random 
variables distributed according to P and Q. 
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Let us remark that we may replace A ~ by A ~1 in the definition of a 
without changing its value. Also, we may replace "all closed A" by "all 
Borel sets B," since, if A is the closure of B, A r = B ~ and A *J = B *J. 

Strassen ~33) proved that, if P,Q~P(S)  and a, f l>0 ,  then P(A)<~ 
Q(A ~) +fl for all closed A if and only if the same condition hold with P 
and Q interchanged. Thus a(P, Q)=a(Q, P)-=p(P, Q). 

Let H(P, Q) be the set of all probability measures on S x S having P 
and Q as marginal measures. Then, the following holds/~5) 

T h e o r e m  5.1. Let S be a separable metric space, P, Q ~ P(S), o~ >1 O, 
and fl >i-0. Then, the following are equivalent: 

(a) P(A)<~Q(A~1)+fl for all closed A c S .  
(b) For any e > 0  there is LeFI(P, Q) such that L(d(x,y)>a+e)<~ 

Theorem 5.1 is all one needs to get a relation between Prokhorov and 
Tanaka metrics in p(Ra), d>~ 1. As in the previous section, given a prob- 
ability density f ,  we will denote by the capital letter F the corresponding 
distribution function. We have the following result. 

T h e o r e m  5.2. Let F, G E P(Rd), d~> 1, and suppose that f,  g satisfy 
(4.5) for some a > 0 .  Then 

T(F, G) <~ ( 2 M +  8) p(F, a)~/~+2) + 4p(F, G) 2 (5.5) 

Proof. By Theorem 4.1, and thanks to (4.5), for any R > 0  and 
Lel l (F ,  G), 

T( F. G) = fR~ Iv- wl 2 dL *( v. w) 

<~ fnu Iv - w] 2 dL(v, w) 

2M 
<~-~ + fR~ Iv - wlz IIiol ~nl ,, ~1,,'1 ~nl dL(v, w) 

Assume that p(F, G ) =  6. Then, according to Theorem 5.1, we can choose 
L~FI(F, G) such that L([v-w[ >2~)~<2~. For such L 

;,.~ I/I.m ~< m ~ I I,,'1 ~ RI v, Iv W[ 2 dL( W) 

fR'~ ]V-- W['- I tlol ~<nl ,~ {Iwl ~<n} I{I ..... I> ~-~ dL( v, W) 

+ j'R,a IV--W] 2 I~J,,l~n} ,',11,,'1 ~nl I{I ..... .I ~2~} dL(v, w) 
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t "  <<.46 z dL( v, W) 

fR2~ I{ Ivl ~ R} r~ {L.'I -< R} I{I . . . .  '1 > ~} dL(v, + 4R 2 W) 462 8 R 2 6  + 

The result follows by choosing R=3 -~/'+'-) | 

We shall now use Theorem 5.1 to compare the Prokhorov metric with 
other metrizations of P(Ra). These metrics are obtained by generalizing 
another metrization of P(S) given in ref. 15. Given 17 i> 1, let 

C"=C"(Re)={q~:R't---}R: sup ~ IDkf(v)' <oo} 
vER d k ~ l  

endowed with the sup-norm, which we denote by II-II,,- Given R > 0, let 
BR= {v~Rr lvl <R},  and let C"R=C"(BR). 

Given FE P(Ra), we define 

,IFII,* =sup  { IR~b dF;(kc C", Ikbl[,, ~< 1 } (5.6) 

An analogous definition can be made when R a is substituted by BR. In this 
case the norm will be indicated by I[' II,,.R. The metric l iE -a l l *  metrizes 
TW* on P(Ra). This will be clear after comparison with the Prokhorov 
metric. We have the following result. 

Let F, GEP(Ra), o~>~0, and fl~>0. Then, if (a) of Lemma 5.3. 
Theorem 5.1 holds, 

I I F - G  I1" ~< 2 max{s, fl} (5.7) 

Proof. Because of the equivalence between (a) and (b) of 
Theorem 5.1, we can find L E II(F, G) such that L( Iv - wl > 0c + ~) ~< fl + e. 
Take a pair of random variables (X, Y), distributed according to F and G, 
respectively, with joint distribution L. Then, for any ~ e C", 

f ~ d ( F - G )  I 

= IE($ (X) ) -  E($(Y))I 

I 
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Taking o~=fl=6 in (5.8) gives 

II F -  G II ,,* i> 

Suppose 6 < c~,/'. Then by (5.9) 

In the opposite case, 

26" + 1 

c,~ + 6" 

6n+l 
l iE -  GII,* >~ 

Cn 

I I F -  GII~* ~ 6  

(5.9) 

Hence we have the following result. 

C o r o l l a r y  5.5. Let F, G~P(Rd). Then, for each n > 0  there exists a 
constant c,,, depending only on n and d, such that 

p(F, a)<~max{c,,[llF-GIl*]~/~"+~; IIF-GII,*} (5.10) 

Lemma 5.3 and Corollary 5.5 together imply that [1 I1" and p define 
the same weak-star uniformity on p(Rd). We remark that the same conclu- 
sion can be drawn for the spaces BR. In fact, we only have to substitute B R 
to R a in the proofs of the previous lemmas. 

Lemma 5.6. Let F, G~ P(Rd), such that, for R > 0 and ;e > 0, 

IH>RdF(v)<.M/R~'; ft,,,>RdG(v)<~M/R ~ (5.11) 

and for y > 0 

PR = inf{e > 0: F(A) <. G(A ~) + e for all closed A = BR} 

<~ dRPe-K, (5.12) 

where fl > 0 and k > 0. Then 

Kt) (5.13) p(F, G)<~(d+ M ) e x p ( -  fl+ 

Proof. For any closed set A c R d, thanks to (5.12) we obtain 

F(A) <~ F(A n BR) + M/R r 

~< G( [A n BR] pR) + PR + M/Rr 
~< G([A c~ BR] pR+ M/R;') + PR + M/R~ 
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Hence, by definition (5.3), 

p(F, G) <<, dR#e -x, + M/R y 

Take R=exp{(Kt)/(fl+y)}, and (5.13) follows, l 

Lemma 5.7. Let R>0 .  Then, given ~> --2, for n > d + ~ + 3  

IIF-GII*R<~D(R+ 1) a+l f(~)~_g(~) o~ (5.14) 

where 

~R dv iR lvl~ + 2 dv 
D = D ( n , d , ~ ) = 2  ~(l+[ol)a+ ~ " l+[ol"  (5.15) 

Proof. Given R>0 ,  let us take a function ~b~C~ such that 
supp r ~ BR. Given the probability densities f, g, by Parsevars formula, we 
have 

fR~(v)tf(v)--g(v)] do= ~R ~( r162162  de 

Moreover, since supp ~b ~ Bn, by the classical inequality 

sup{(1 + I~1 k) ~(4)} ~< c. sup{(1 + Ivl) "+' IOk~(c)l} 
c~ t, 

d. 

c.= , , ( l+lvl )  d+~ 

we obtain, for k ~ 17, 

sup I~k~(~)l <.Cd(1 +R)  "t+' II~ll. (5.16) 

By the previous inequality 

fR,,6(r162 g(r de 

= f~,, 14(~)1. I~1 ~+2 I f (~ ) -g (~) l  d~ 
I~1 ~+-~ 

f ( ~ ) - g ( ~ )  f Iol ~+2,tv 
~< ~_~--; ~ sup{r I~(~)1 (1 + I~1")} jR~ I + Ivl" 

Thus, choosing n > d + ~ + 3 ,  by definition (5.6) the result follows. I 
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Let us denote by pR(F, G) the Prokhorov distance when F, G are 
restricted to Be, and suppose 

c , , [ l l F - " " *  11/(,,+t)~ IIF-GII*R ~ r  I l n ,  R j  ~.-  , 

Then, by Corollary 5.5 and Lemma 5.7 

an(F, G) <~c,,Dt/("+"(R+ 1) (a+l)/('+') f ( ~ ) ~ g ( ~ )  ~("+" (5.17) 

The next step is to let F =  F(t) be the distribution corresponding to f, 
a solution of the Boltzmann equation, and G = t2, the equilibrium distribu- 
tion. Because of the pressure term in Lemma 2.2, the estimate for f - o 3  
does not quite fit into (5.17), but since t3 is bounded and supported in 
{1~1~<1}, we can simply replace U(f-cb)/[.12+"][~ by 11~,/1.12+=11~+ 
IIPII ~- Denote/5( -, 0) = Po and �9 1( ', 0) = �9 1. o. Then Lemma 2.2 gives 

pg(F(t), I2) 

r o ~ ilPoll~) 1/(''+11 <-..c,,DI/I"+I)(R+ 1) ta+ l~/t''+ I~ \C1 + + 

Take ? = 2 + e, fl-- (d + 1)/(n + 1), and K =  c~/(n + 1). By Lemma 5.6 we 
obtain 

pR(R(t), D) 

^ "~11("+1)+M ] 
<'--c, DI/I"+')I(C,+ ~ +l lPol l~j  

{ (2+ct) c~ } 
xexp - d + l + ( 2 + a ) ( n + l ) t  (5.18) 

If instead 

we obtain 

c,,i- [IF_ ~il .  1 l/(,,+ I) * ,-' ,,,,. R.l ~< IIF-  GII,,.R 

xexp d + l + 2 + o ~  (5.19) 
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Finally we have the following result. 

T h e o r e m  5.8. Let f(v,t) be the solution to the initial value 
problem for the Boltzmann equation for Maxwell molecules with initial 
density fo(v) such that, for some cz > 0, 

I lvl2+=fo(v) dv=Mo< oo (5.20) 

Then, f(v, t) is exponentially convergent toward equilibrium in Prokhorov 
metric, and for n > d +  0r the following bound holds: 

pR(F(t), ~) 

where 

and 

1) ~ ~)l/(n+l) + M ] . ~max {cnDl/(n+ [ (Cl + ~ + n t 3 o ] [  

o[(+,+ 
• exp - a +  1 + ( 2  7 ~ , ,  + 1) t (5.21/ 

0 ~ 1 ) &(r ,aj g IIi+l'<'l 2 -d-~fo(~l-6,,j V2]o(~) i,j 

O, o = ] o ( ~ ) - c o ( l ) - P o  

Remark 5.1. The relation between the Tanaka distance and the 
Prokhorov distance given in Theorem 5.2 implies that the convergence to 
equilibrium is exponential also when measured in the Tanaka metric. This 
holds in the case when the initial data possess 2 + ~ moments; an explicit 
formula corresponding to (5.5) can be found also in the more general case 
treated in Section 3, and thus it is also possible to estimate the rate of trend 
to equilibrium in that case. However, one does not necessarily obtain an 
exponential estimate. 
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